Log-Convexity Properties of Schur Functions and Generalized Hypergeometric Functions of Matrix Argument
نویسنده
چکیده
We establish a positivity property for the difference of products of certain Schur functions, sλ(x), where λ varies over a fundamental Weyl chamber in R n and x belongs to the positive orthant in R. Further, we generalize that result to the difference of certain products of arbitrary numbers of Schur functions. We also derive a log-convexity property of the generalized hypergeometric functions of two Hermitian matrix arguments, and we show how that result may be extended to derive higher-order log-convexity properties.
منابع مشابه
Lommel Matrix Functions
The main objective of this work is to develop a pair of Lommel matrix functions suggested by the hypergeometric matrix functions and some of their properties are studied. Some properties of the hypergeometric and Bessel matrix functions are obtained.
متن کاملLog-convexity and log-concavity of hypergeometric-like functions
We find sufficient conditions for log-convexity and log-concavity for the functions of the forms a 7→ ∑ fk(a)kx , a 7→ ∑ fkΓ(a + k)x k and a 7→ ∑ fkx k/(a)k. The most useful examples of such functions are generalized hypergeometric functions. In particular, we generalize the Turán inequality for the confluent hypergeometric function recently proved by Barnard, Gordy and Richards and log-convexi...
متن کاملTotal Positivity Properties of Generalized Hypergeometric Functions of Matrix Argument
In multivariate statistical analysis, several authors have studied the total positivity properties of the generalized (0F1) hypergeometric function of two real symmetric matrix arguments. In this paper, we make use of zonal polynomial expansions to obtain a new proof of a result that these 0F1 functions fail to satisfy certain pairwise total positivity properties; this proof extends both to arb...
متن کاملOn difference sequence spaces defined by Orlicz functions without convexity
In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009